15 research outputs found

    Nonlinear Channel Estimation for OFDM System by Complex LS-SVM under High Mobility Conditions

    Full text link
    A nonlinear channel estimator using complex Least Square Support Vector Machines (LS-SVM) is proposed for pilot-aided OFDM system and applied to Long Term Evolution (LTE) downlink under high mobility conditions. The estimation algorithm makes use of the reference signals to estimate the total frequency response of the highly selective multipath channel in the presence of non-Gaussian impulse noise interfering with pilot signals. Thus, the algorithm maps trained data into a high dimensional feature space and uses the structural risk minimization (SRM) principle to carry out the regression estimation for the frequency response function of the highly selective channel. The simulations show the effectiveness of the proposed method which has good performance and high precision to track the variations of the fading channels compared to the conventional LS method and it is robust at high speed mobility.Comment: 11 page

    Cross-layer distributed power control: A repeated games formulation to improve the sum energy-efficiency

    Get PDF
    The main objective of this work is to improve the energy-efficiency (EE) of a multiple access channel (MAC) system, through power control, in a distributed manner. In contrast with many existing works on energy-efficient power control, which ignore the possible presence of a queue at the transmitter, we consider a new generalized cross-layer EE metric. This approach is relevant when the transmitters have a non-zero energy cost even when the radiated power is zero and takes into account the presence of a finite packet buffer and packet arrival at the transmitter. As the Nash equilibrium (NE) is an energy-inefficient solution, the present work aims at overcoming this deficit by improving the global energy-efficiency. Indeed, as the considered system has multiple agencies each with their own interest, the performance metric reflecting the individual interest of each decision maker is the global energy-efficiency defined then as the sum over individual energy-efficiencies. Repeated games (RG) are investigated through the study of two dynamic games (finite RG and discounted RG), whose equilibrium is defined when introducing a new operating point (OP), Pareto-dominating the NE and relying only on individual channel state information (CSI). Accordingly, closed-form expressions of the minimum number of stages of the game for finite RG (FRG) and the maximum discount factor of the discounted RG (DRG) were established. The cross-layer model in the RG formulation leads to achieving a shorter minimum number of stages in the FRG even for higher number of users. In addition, the social welfare (sum of utilities) in the DRG decreases slightly with the cross-layer model when the number of users increases while it is reduced considerably with the Goodman model. Finally, we show that in real systems with random packet arrivals, the cross-layer power control algorithm outperforms the Goodman algorithm.Comment: 36 pages, single column draft forma

    A NEW IMPORTANCE-SAMPLING ML ESTIMATOR OF TIME DELAYS AND ANGLES OF ARRIVAL IN MULTIPATH ENVIRONMENTS

    Get PDF
    ABSTRACT In this paper, the importance sampling (IS) concept is exploited for the first time in the context of maximum likelihood (ML) estimation of both the time delays and angles of arrival (AoAs) in multipath propagation environments. The global maximum of the compressed likelihood function (CLF) is found empirically with a low computational cost. Simulations suggest that the new IS-based ML-type estimator outperforms, in terms of accuracy, the main state-of-the-art techniques published on the topic. It is also able to reach the Cramér-Rao-lower bound (CRLB

    Formulation combinée spatiale-spectrale de la méthode des moments pour l'étude des structures planaires en très hautes fréquences

    No full text
    Méthode des moments -- Forme analytique approchée des fonctions de green spatiales pour les potentiels vecteur et scalaire -- Formulation simultanées de la méthode des moments dans les domaines spatial et spectral

    Energy-Efficient Spectrum Sharing in Relay-Assisted Cognitive Radio Systems (Invited Paper)

    No full text
    Abstract—This work characterizes an important solution concept of a relevant spectrum game. Two energy-efficient sources communicating with their respective destination compete for an extra channel brought by a relay charging the used bandwidth through a pricing mechanism. This game is shown to possess a unique Nash bargaining solution, exploiting a time-sharing argument. This Pareto-efficient solution can be implemented by using a distributed optimization algorithm for which each transmitter uses a simple gradient-type algorithm and alternately updates its spectrum sharing policy. Typical numerical results show to what extent spectral efficiency can be improved in a system involving selfish energy-efficient sources
    corecore